Turning Toxoplasma Against Cancer

Several research groups have found that Toxoplasma gondii infection can ramp up antitumor immune responses in mice. Can the single-cell parasite be used to develop safe treatments for humans?

Written byAnnie Melchor
| 9 min read
Illustration of clear cells with orange nuclei, Toxoplasma gondii, on colorful background
Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

To keep immune cells from reacting to inappropriate triggers or dragging out their response for too long, they’re equipped with sundry molecular safeguards called immune checkpoints that nearby immune cells can flip on. As important as these checkpoints are, many tumors take advantage of them, throwing on these molecular brakes to dampen the antitumor immune response. A common form of immunotherapy called immune checkpoint blockade, or checkpoint inhibition, seeks to counter this kind of immunosuppression by physically blocking the immune checkpoint molecules so they can’t relay inhibitory signals. But while this treatment is successful in some patients, it fails in many others, and scientists don’t entirely know why—or more importantly, how to overcome the tumor’s immunosuppression. Key clues to solving this mystery are coming from an unexpected source: the brain-dwelling parasite Toxoplasma gondii.

The idea of tackling cancer with a brain parasite arose in the 1960s and 1970s when scientists ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • black and white photograph of stephanie melchor

    Stephanie "Annie" Melchor got her PhD from the University of Virginia in 2020, studying how the immune response to the parasite Toxoplasma gondii leads to muscle wasting and tissue scarring in mice. While she is still an ardent immunology fangirl, she left the bench to become a science writer and received her master’s degree in science communication from the University of California, Santa Cruz, in 2021. You can check out more of her work here.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies