Newton’s Color Theory, ca. 1665

Newton’s rainbow forms the familiar ROYGBIV because he thought the range of visible colors should be analogous to the seven-note musical scale.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

COLOR NOTES: In Newton’s color wheel, in which the colors are arranged clockwise in the order they appear in the rainbow, each “spoke” of the wheel is assigned a letter. These letters correspond to the notes of the musical scale (in this case—the Dorian mode—the scale starts on D with no sharps or flats). Newton devised this color-music analogy because he thought that the color violet was a kind of recurrence of the color red in the same way that musical notes recur octaves apart. He introduced orange and indigo at the points in the scale where half steps occur: between E and F (orange) and B and C (indigo) to complete the octave.ISAAK NEWTON, WIKIMEDIA COMMONSAround 1665, when Isaac Newton first passed white light through a prism and watched it fan out into a rainbow, he identified seven constituent colors—red, orange, yellow, green, blue, indigo, and violet—not necessarily because that’s how many hues he saw, but because he thought that the colors of the rainbow were analogous to the notes of the musical scale.

Naming seven colors to correspond to seven notes is “a kind of very strange and interesting thing for him to have done,” says Peter Pesic, physicist, pianist, and author of the 2014 book Music and the Making of Modern Science. “It has no justification in experiment exactly; it just represents something that he’s imposing upon the color spectrum by analogy with music.”

Of his rainbow experiment Newton wrote that he had projected white light through a prism onto a wall and had a friend mark the boundaries between the colors, which Newton then named. In his diagrams, which showed how colors corresponded to notes, Newton introduced two colors—orange and indigo—corresponding to half steps in the octatonic scale. Whether Newton’s friend delineated indigo and orange on ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley P. Taylor

    This person does not yet have a bio.

Published In

March 2017

Music

The production and neural processing of musical sounds, from birdsong to human symphonies

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer