Next-Gen Test Tube Baby Born

A baby has been born using in vitro fertilization aided by next-generation sequencing of embryos for genetic abnormalities.

Written byChris Palmer
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, ERNEST FAbnormalities in the DNA of embryos account for the two-thirds failure rate of in vitro fertilization (IVF)—a procedure where eggs are fertilized by sperm in a dish, then later implanted in the uterus. Genetic tests exist to screen for embryos with chromosomal or genetic defects prior to implantation, but the tests are expensive and have drawbacks. Researchers at the University of Oxford have developed a relatively inexpensive next-generation sequencing technique that overcomes the limitations of previous tests, and has already been used in the IVF procedure that resulted in the birth of a baby boy in May. The research was reported Monday (July 8) at the annual meeting of the European Society of Human Reproduction and Embryology in London.

The new sequencing technique allows researchers to examine each embryo created with IVF for abnormal numbers of chromosomes, individual gene mutations, and mitochondrial genome mutations. The analysis can be completed in only 16 hours, meaning embryos do not need to be frozen awaiting test outcomes. The researchers claim the new test will be cheaper than current screening procedures, which can cost thousands of dollars.

“Next-generation sequencing improves our ability to detect these abnormalities and helps us identify the embryos with the best chances of producing a viable pregnancy,” said Dagan Wells, a molecular geneticist at the NIHR Biomedical Research Centre at the University of Oxford, in a statement. “Potentially, this should lead to improved IVF success rates and a lower risk of miscarriage.”

The new ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies