Next Generation: Nanowire Forest

Researchers show that nanowire-based biosensors can collect and detect proteins in one chip.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Device: Researchers at Tel-Aviv University have developed a device—based entirely on nanowires—that can collect and separate specific proteins for analysis from blood or urine. The strategy relies on two sets of nanowires integrated into one chip. First, antibodies attached to a “forest” of upright silicon nanowires (or nanoposts) collect and concentrate proteins from a drop of patient sample, while unwanted cells and proteins are washed away. Then, the concentrated proteins are washed from the nanowire forest to a set of nanowire sensors, also covered in antibodies targeted to the protein of interest, which convert protein binding to an electrical signal.

Within about 10 minutes, the chip can detect proteins at a high concentration—about 0.4 micromolar. The device can also be rigged with two sets of antibodies, allowing the scientists to detect two proteins in one sample. In work published last month (August 2) in Nano Letters, the device’s creators demonstrate ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Sabrina Richards

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo