Next Generation: Sperm-Catching Beads

Sperm-binding, peptide–coated beads work as an implantable contraception device in mice and as a means of selecting human sperm for assisted reproduction techniques, researchers show.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Green fluorescently tagged sperm, released from epididymis (left), red-tagged sperm after incubation (middle), or mixed (right) binding to the zona pellucida of a mouse oocyte in vitroSCIENCE TRANSLATIONAL MEDICINE, M.A. AVELLA ET AL.The device: Researchers have created peptide-coated agarose beads that bind mouse sperm in vitro and in vivo, as well as human sperm in vitro, according to a study published today (April 27) in Science Translational Medicine. When transplanted into the mouse uterus, the sperm-binding peptide–coated beads prevented fertilization for more than two months, after which the female animal was again fertile.

In vitro, human sperm that reversibly bound to similar peptide–coated beads resembled the male gametes normally selected to have the greatest capacity to bind and fertilize human oocytes.

“You can have anything go wrong in this whole process, but they got it to work and that is surprising and very impressive,” said Deijan Ren, a professor of biology at the University of Pennsylvania in Philadelphia who was not involved in the work.

Mammalian oocytes and preimplantation embryos are coated with a multi-glycoprotein membrane called the zona pellucida. Researchers at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and their colleagues coated inert beads with either mouse or human peptides of one of these glycoproteins, called ZP2, which is required for prefertilization sperm-oocyte ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH