No Arsenic-Based Life

Two new studies conclusively prove "arsenic-based" bacteria hailed by NASA researchers as a new form of life needs phosphate after all.

Written byHayley Dunning
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

When NASA announced in December 2010 that its researchers had discovered a bacteria (GFAJ-1) that used arsenic in the backbone of its DNA instead of phosphate, the implications for alternative forms of life set the media and scientific community into a frenzy. An alternative DNA structure could mean an entirely new root for an evolutionary tree that grew up alongside the phosphate-bearing DNA structure used by every organism currently known on Earth.

But controversy over the methodology led many to challenge the result, and two papers published online today (July 9) in Science convincingly show that GFAJ-1 does in fact need phosphate to grow, and cannot survive when only arsenic is present instead. Furthermore, neither study found arsenic within or bound to the DNA of the bacteria.

One of the papers' authors, Rosie Redfield from the University of British Columbia, has been blogging about her progress in testing the claim, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH