Of mice and mitochondria

A murine mitochondrial haplotype in Chicago has all but disappeared in the past century

Written byCathy Holding
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Mitochondrial DNA mutates at a faster rate than nuclear genomic sequences and may provide a mechanism for organisms to adapt rapidly to a changing environment. Mitochondrial proteins interact with gene products encoded by the "host" nucleus to carry out oxidative phosphorylation, and selection pressure may cause these interactions to work at maximum efficiency under different conditions. Comparative analysis of mitochondrial DNA sequences has been used to discover phylogenetic and phylogeographic patterns in a number of organisms. In the May 22 Nature, Oliver Pergams and colleagues at the University of Illinois at Chicago use these techniques to detect possible variations in the conditions in which an organism is living (Nature, 423:397, May 22, 2003).

Pergams et al. obtained specimens of skin of the white-footed mouse, Peromyscus leucopus, from museums worldwide. They obtained 61 samples originally collected from five different areas in Chicago and compared a 340bp polymorphic region in the cytochrome ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH