Opinion: Canine Models for Alzheimer’s

For research on drugs to treat neurodegenerative diseases, dogs offer a better predictor of clinical outcomes.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Dog models for Alzheimer's FLICKR, AUSTIN KIRKIt’s no secret that fewer than 10 percent of investigational drugs achieve regulatory approval and reach the marketplace. But the chances of success for drugs developed to treat Alzheimer’s disease are even more grim. Despite researchers’ valiant efforts to stall, slow, or even beat this devastating neurodegenerative condition, there are still no effective drugs available to the estimated 5.4 million Americans with the disease.

The scientific community has watched in dismay, time and again, as potential Alzheimer’s drugs that produced promising data in rodent models failed to work as expected in humans. For the most part, these drugs have pursued the promising “amyloid hypothesis,” which states that the disease may be caused by accumulation of beta-amyloid peptide in brain tissue resulting in neuron-killing plaques. But so far, no drug candidates targeting the beta-amyloid pathway have prevailed through late-stage clinical trials. Earlier this year, for example, Merck halted a Phase 2/3 trial of verubecestat, a small molecule inhibitor of a protein implicated in the buildup of beta-amyloid, called beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), due to a lack of efficacy. Another high-profile example occurred late last year, when ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research