Opinion: Rescuing Ecosystems

Pushing the envelope of ecosystem restoration and creation could help recover the planet’s biodiversity.

Written byDavid Moreno-Mateos
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Restoring a freshwater tidal marsh on the Anacostia River, Washington, DC© Ecological Restoration and Management, Inc.Today, approximately 70 percent of the world’s ecosystems have been altered to some degree, and the whole Earth may be approaching a tipping point toward an uncertain regime as a consequence of the accelerated global loss of biodiversity and ecosystem functionality. Ecosystem restoration and creation is necessary now more than ever before to slow and, where possible, reverse that loss. But devising successful restoration strategies can be tricky.

Following ecosystem restoration, it may take many decades or centuries for damaged ecosystems to recover the structure and functionality they had prior to degradation. For example, in five depressional wetlands in the state of New York, only 50 percent of their organic matter was recovered 50 years after they were restored. Similarly, artificial ecosystems take just as long to resemble the selected reference systems its engineers are trying to recreate.

Some restorations and creations fail altogether, such as wetlands that end up dominated by invasive reeds or prairies where focal threatened species do not reestablish. In cases of success, some components, like highly mobile vertebrates, recover or re-assemble faster than others, like plants, which can affect the speed and trajectory of ecosystem recovery or development. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH