Oxidation Signals Tardigrades to Enter Hibernation

Water bears survive some of Earth’s harshest conditions by relying on their own chemical alarms.

Written byAparna Nathan, PhD
| 4 min read
3D illustration of a tardigrade
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Tardigrades have gone through a lot for the sake of science. Scientists have launched them into space, dunked them in sub-freezing water, and shot them out of a gun.1-3 They are not quite indestructible, but they are close.

These squishy water bears use a strategy called cryptobiosis to survive everything from extreme temperatures to drying out. When they encounter harsh conditions, they enter a dormant state where metabolic processes grind to a halt, and they curl up into a ball called a tun. With this defense mechanism, tardigrades are one of the only species able to live in the most inhospitable corners of the globe.

While scientists observed tardigrades repeatedly surviving conditions that should have been fatal, they still couldn’t figure out how tardigrades knew when to form tuns and how those tuns kept them alive. A new study published in PLOS One reveals for the first time how tardigrades harness chemicals to endure some deathly environments.4 Their results shed new light on how reversible chemical modifications can turn on and off the microbes’ defensive state.

“A common misconception when people think about tardigrades is that they are extremophiles,” said Derrick Kolling, a chemist at Marshall University and author of the study. “They're not. Some can live under pretty adverse conditions relative to other animals, but really, their forte is being extremotolerant.”

The idea for the study emerged when Kolling, who was interested in the chemical world of microbes, decided to put tardigrades in a machine that measured molecules with unpaired electrons, such as oxides. To his surprise, the tardigrades seemed to make these molecules, especially when they formed tuns. Many common stressors can also spur the production of similar oxides in various organisms, so Kolling wondered whether oxidized molecules may play a role in tun formation.

To answer this, he partnered with Leslie Hicks, a chemist at the University of North Carolina at Chapel Hill and coauthor of the study. They decided to focus on one tardigrade species, Hypsibius exemplaris. The team members stood at microscopes for hours, painstakingly excavating tardigrades from the algae in which they grew. Then they subjected the tardigrades to a battery of extreme conditions. Some conditions were fatal, but others, such as freezing temperatures and high water pressures, resulted in the tardigrades forming tuns and surviving the ordeals.

The researchers were especially intrigued to see that when they submerged the tardigrades in hydrogen peroxide to mimic chemical stress, they rapidly formed tuns. In particular, the oxides seemed to trigger tun formation by modifying an amino acid called cysteine in the tardigrades’ proteins. When the researchers prevented cysteine oxidation using other chemicals, the tardigrades no longer curled up into tuns—not just in response to hydrogen peroxide, but also when frozen or in high water pressure, suggesting that oxidizing signals play a central role in protecting tardigrades against a variety of stressors.

Oxidation seemed to be an on-off switch for tun formation, Kolling said. In stressful environments, the cysteines oxidized and triggered the process of tun formation. When the environment returned to normal, the oxidized cysteines reverted to their initial states and the tardigrades unrolled from their tuns.

Continue reading below...

Like this story? Sign up for FREE Microbiology updates:

Latest science news storiesTopic-tailored resources and eventsCustomized newsletter content
Subscribe

“It's a really clear demonstration that these residues are involved,” Kolling said.

The fact that tardigrades’ defenses could be triggered by toxic chemicals—a process called chemobiosis—hadn’t been compellingly shown in tardigrades before, according to Łukasz Kaczmarek, an ecologist at Adam Mickiewicz University who was not involved in this study. Kaczmarek thinks that the new study fills a crucial gap in scientists’ understanding of tardigrade resilience.

“Now we know that chemobiosis is a real response of tardigrades,” Kaczmarek said. But he emphasized that there is still much more to learn about cryptobiosis in general. “We know almost nothing,” he said. “We know that some molecules are involved in this process, but how do they work? We don't know.”

For starters, Kaczmarek noted that this study focused on one tardigrade species and a limited set of stressors; he wondered whether similar responses might be found in other tardigrade species or in response to other stressors. Kolling and Hicks’s team focused on this tardigrade species because it’s relatively easy to work with, but they are also interested in studying the role of oxidation in cryptobiosis across many other species of tardigrades and other organisms.

“This was a chemical investigation into a biological system, and I think in this niche, there's so much work to be done and important questions to be answered,” Kolling said.

Related Topics

Meet the Author

  • Aparna Nathan, PhD

    Aparna is a freelance science writer with a PhD in bioinformatics and genomics from Harvard University. She uses her multidisciplinary training to find both the cutting-edge science and the human stories in everything from genetic testing to space expeditions. She was a 2021 AAAS Mass Media Fellow at the Philadelphia Inquirer. Her writing has also appeared in Popular Science, PBS NOVA, and The Open Notebook.

    View Full Profile
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo