Pesticides Reduce Male Honeybee Fertility: Study

Drones exposed to neonicotinoids have fewer viable sperm and show reduced longevity.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, ZEYNEL CEBECIExposure to neonicotinoids, a type of pesticide widely used on crops, reduced the percentage of viable sperm in male honeybees (drones) and also shortened the insects’ lifespans, according to a study published today (July 27) in Proceedings of the Royal Society B.

“Exposure to common pesticides leads to a decline in sperm quality in honeybees, even when the dose of pesticide provided is so small that it has no effect on growth and development,” Peter Dearden, a geneticist and bee researcher at New Zealand’s University of Otago who was not involved in the work, wrote in an email to The Scientist. The levels of pesticides used in these experiments were equivalent to those bees might encounter in a neonicotinoid-treated field. But even a small adverse effect from a low pesticide dose can have serious ramifications, said Dearden. “Because bee society relies on each caste and group of workers doing their job effectively, these sublethal effects, such as an effect on sperm quality may have very significant long-term ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley P. Taylor

    This person does not yet have a bio.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development