Phytochemical Helps Differentiate Workers from Queen Bees

The consumption of p-coumaric acid, a chemical found in honey and pollen, may help set a female honeybee on its course to becoming a worker instead of a queen.

Written byAshley P. Taylor
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, QUARTLA newly hatched female honeybee larva can develop into either an egg-laying queen or a sterile worker. One determinant of a female bee’s social caste, it turns out, is the insect’s early-life diet. Future queens are fed nothing but royal jelly, a glandular secretion of so-called nurse bees, which feed both the larvae and the queen; queens continue this exclusive royal jelly diet throughout their lives. Future worker bees, on the other hand, are only fed royal jelly for their first three days; after that, they eat royal jelly mixed with fermented pollen, called beebread, and honey. Precisely what about these honeybee baby foods might help determine their developmental fates has long been an open question.

Consumption of the phytochemical p-coumaric acid, a phenolic substance found in beebread and honey but not in royal jelly, may be one factor that leads female larvae to become worker bees, according to a study published today (August 28) in Science Advances. Researchers from the University of Illinois at Urbana-Champaign “show that p-coumaric acid is a potent regulator of gene regulation and development in honey bees,” Ryszard Maleszka, who studies genetics and epigenetics in honeybees at the Australian National University in Canberra but was not involved in the work wrote in email to The Scientist. This chemical, he continued, “has the capacity to suppress ovary development and it affects the expression of genes including those controlling organ sizes, epigenetic machineries and detoxification.”

“The authors clearly ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies