Plant Cells and Soap Bubbles

Editor’s Choice in Plant Biology

Written byRichard P. Grant
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The green alga Coleochaete orbicularisgrows by the outermost cells dividing, starting with a single cell in the centre. Modeling this by repeatedly applying Errera's rule - that is, making cells divide along the smallest plane that can create two daughter cells of equal size - reproduces real algal development.PRECISION GRAPHICS

What can soap bubbles tell us about cell division? More than you might think: in 1886 Leo Errera noted that bubbles in soap resembled dividing cells. He thought the shape of the bubbles could predict where plant cells would divide, and by 1888 he had formulated a rule saying that the cell plate—the structure that splits a dividing plant cell in two—adopts the same area-minimizing geometry as a soap film. Jacques Dumais and Sébastien Besson at Harvard have now done some bubbly experiments of their own, extending Errera’s rule and accounting for exceptions to it.

At cell division, cells assemble complex molecular structures to ensure that chromosomes get separated into different daughter cells as the parent cell splits in two. But how does the molecular ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH