Plant Photoreceptor Doubles as a Thermometer

Warmth acts on a light-sensing protein similarly to the way shade does, setting off a growth spurt in plant seedlings.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

LIGHT SWITCH: The active form of the photoreceptor phytochrome B (phyB) suppresses stem growth in seedlings. In lab experiments, low light inactivates phyB, triggering growth. Warm temperatures turn out to also inactivate phyB, evidence that this pathway monitors temperature as well as light to coordinate growth. This may explain why plants grow the most in warmer, shady conditions compared to cooler shade, and why plants in full light—a growth-slowing condition—grow more if it’s warm.
© KIMBERLEY BATTISTA

The paper
M. Legris et al., “Phytochrome B integrates light and temperature signals in Arabidopsis,Science, 354:897-900, 2016.

Researchers discovered in the 1930s that they could cause lettuce seeds to germinate just by shining red light on them. It turns out, as scientists later revealed, that the proteins responsible for this phenomenon are photoreceptors called phytochromes, now appreciated for their roles in regulating many aspects of plant development beyond germination, from stem growth to the sprouting of leaves to bud flowering. A pair of papers published last October in Science, however, describes an entirely new role for one of the pigments: sensing temperature.

The experiments were conducted on phytochrome B (phyB), which, like other phytochromes, is activated by red light but deactivated by light on the far-red end of the visible light spectrum. When turned on, phyB shuts off a class of transcription factors needed for stem growth in seedlings. If the seedling is in the shade of another plant—a potentially fatal situation—far-red light filters through the leaves and triggers a growth spurt.

Jorge Casal, a researcher at the Agricultural Plant Physiology and Ecology Research Institute in Argentina and a coauthor on one of the papers, initially hypothesized that phyB would be unaffected ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ben Andrew Henry

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo