Plant Photoreceptor Doubles as a Thermometer

Warmth acts on a light-sensing protein similarly to the way shade does, setting off a growth spurt in plant seedlings.

Written byBen Andrew Henry
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

LIGHT SWITCH: The active form of the photoreceptor phytochrome B (phyB) suppresses stem growth in seedlings. In lab experiments, low light inactivates phyB, triggering growth. Warm temperatures turn out to also inactivate phyB, evidence that this pathway monitors temperature as well as light to coordinate growth. This may explain why plants grow the most in warmer, shady conditions compared to cooler shade, and why plants in full light—a growth-slowing condition—grow more if it’s warm.
© KIMBERLEY BATTISTA

The paper
M. Legris et al., “Phytochrome B integrates light and temperature signals in Arabidopsis,Science, 354:897-900, 2016.

Researchers discovered in the 1930s that they could cause lettuce seeds to germinate just by shining red light on them. It turns out, as scientists later revealed, that the proteins responsible for this phenomenon are photoreceptors called phytochromes, now appreciated for their roles in regulating many aspects of plant development beyond germination, from stem growth to the sprouting of leaves to bud flowering. A pair of papers published last October in Science, however, describes an entirely new role for one of the pigments: sensing temperature.

The experiments were conducted on phytochrome B (phyB), which, like other phytochromes, is activated by red light but deactivated by light on the far-red end of the visible light spectrum. When turned on, phyB shuts off a class of transcription factors needed for stem growth in seedlings. If the seedling is in the shade of another plant—a potentially fatal situation—far-red light filters through the leaves and triggers a growth spurt.

Jorge Casal, a researcher at the Agricultural Plant Physiology and Ecology Research Institute in Argentina and a coauthor on one of the papers, initially hypothesized that phyB would be unaffected ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH