Plant Photoreceptor Doubles as a Thermometer

Warmth acts on a light-sensing protein similarly to the way shade does, setting off a growth spurt in plant seedlings.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

LIGHT SWITCH: The active form of the photoreceptor phytochrome B (phyB) suppresses stem growth in seedlings. In lab experiments, low light inactivates phyB, triggering growth. Warm temperatures turn out to also inactivate phyB, evidence that this pathway monitors temperature as well as light to coordinate growth. This may explain why plants grow the most in warmer, shady conditions compared to cooler shade, and why plants in full light—a growth-slowing condition—grow more if it’s warm.
© KIMBERLEY BATTISTA

The paper
M. Legris et al., “Phytochrome B integrates light and temperature signals in Arabidopsis,Science, 354:897-900, 2016.

Researchers discovered in the 1930s that they could cause lettuce seeds to germinate just by shining red light on them. It turns out, as scientists later revealed, that the proteins responsible for this phenomenon are photoreceptors called phytochromes, now appreciated for their roles in regulating many aspects of plant development beyond germination, from stem growth to the sprouting of leaves to bud flowering. A pair of papers published last October in Science, however, describes an entirely new role for one of the pigments: sensing temperature.

The experiments were conducted on phytochrome B (phyB), which, like other phytochromes, is activated by red light but deactivated by light on the far-red end of the visible light spectrum. When turned on, phyB shuts off a class of transcription factors needed for stem growth in seedlings. If the seedling is in the shade of another plant—a potentially fatal situation—far-red light filters through the leaves and triggers a growth spurt.

Jorge Casal, a researcher at the Agricultural Plant Physiology and Ecology Research Institute in Argentina and a coauthor on one of the papers, initially hypothesized that phyB would be unaffected ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ben Andrew Henry

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Discover a serum-free way to produce dendritic cells and macrophages for cell therapy applications.

Optimizing In Vitro Production of Monocyte-Derived Dendritic Cells and Macrophages

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with Lipid Nanoparticles

Thermo Fisher Logo