Polymerase may be key to flu's virulence

Model points to importance of polymerase activity in species jump

Written byCathy Holding
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Mutations in the polymerase gene could explain how the influenza virus jumps the species barrier, according to a study in this week's Proceedings of the National Academy of Sciences. The mutations appear to enhance the enzyme's activity, making the virus more virulent. Similar mutations are also present in the highly pathogenic avian flu virus H5N1, strains of which have recently been detected in mammals. These findings suggest that changes to polymerase may be a prerequisite for adaptation to a new host, opening the door to a potential pandemic, according to study author Juergen Stech, who headed the team from the Institute of Virology in Marburg, Germany.

"We can conclude from our studies that we have some convergent evolution through the polymerase [gene] -- but it is also clear that the polymerase is not everything," Stech said.

To model the species jump from bird to mammal, the researchers compared two previously ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH