Primer: Acoustics and Physiology of Human Speech

People have a unique anatomy that supports our ability to produce complex language.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The elastic recoil of the lungs provides the necessary acoustic energy, while the diaphragm, intercostal muscles, and abdominal muscles manipulate how that air is released through the larynx, a complex structure that houses the vocal cords, and the supralaryngeal vocal tract (SVT), which includes the oral cavity and the pharynx, the cavity behind the mouth and above the larynx.

When air from the lungs rushes against and through the muscles, cartilages, and other tissue of the vocal cords, they rapidly open and close to produce what’s known as the fundamental frequency of phonation (F0), or the pitch of a speaker’s voice. The principal sounds that form words—known as formant frequencies—are produced by changes to the positions of the lips, tongue, and larynx.

In addition to the anatomy of the SVT, humans have evolved increased synaptic connectivity and malleability in certain neural circuits in the brain important for producing and understanding ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Philip Lieberman

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo