Prions' Changeability: Nuclear magnetic resonance shows more pieces of the puzzle

Prions have been a tough sell. Against a backdrop of the "DNA to RNA to protein" credo, the idea that the same amino acid sequence could exist in multiple forms, both normal and deranged, seemed like heresy. But since Stanley Prusiner, a professor of neurology, virology, and biochemistry at the University of California, San Francisco (UCSF), named the agent that causes the transmissible spongiform encephalopathies (TSEs) "proteinaceous infectious particles" in 1982,1 evidence has been steadily

Written byRicki Lewis
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

Prions have been a tough sell. Against a backdrop of the "DNA to RNA to protein" credo, the idea that the same amino acid sequence could exist in multiple forms, both normal and deranged, seemed like heresy. But since Stanley Prusiner, a professor of neurology, virology, and biochemistry at the University of California, San Francisco (UCSF), named the agent that causes the transmissible spongiform encephalopathies (TSEs) "proteinaceous infectious particles" in 1982,1 evidence has been steadily accumulating that these prion proteins can indeed set up a deadly chain reaction that renders the brains of 85 mammalian species similar in appearance to Swiss cheese.

Yet despite the mounting evidence, many demonstrations of prion action have been inferred, indirect, or incomplete. A view of how the same molecule can take on different guises has been lacking--until now. Thomas James, chairman of the department of pharmaceutical chemistry at UCSF, with Prusiner and others, has ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies