Prioritizing speed

Related Articles Tips for choosing a microscope setup Going Live How it Works: Two-Photon Microscopy Pooling resources Mix and match Deep down view Sticking to the surface User: Peter Robin Hiesinger, a neurogeneticist at UT Southwestern Medical Center in Dallas. Project: Real-time imaging (seconds to minutes) of synaptic transmission at the neuromuscular junction of the developing fly larva; time-lapse imaging (hours to days) of neuronal outgrowth in cultures of dev

Written byAlla Katsnelson
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

User: Peter Robin Hiesinger, a neurogeneticist at UT Southwestern Medical Center in Dallas.

Project: Real-time imaging (seconds to minutes) of synaptic transmission at the neuromuscular junction of the developing fly larva; time-lapse imaging (hours to days) of neuronal outgrowth in cultures of developing brain.

Problem: Hiesinger needed a system that could handle both extremely short and extremely long timescales.

Solution: Hiesinger's real-time imaging experiments require the acquisition of as many as 25 images per second. Although a spinning-disk confocal microscope can achieve the speed, it lacks the flexibility to change the pinhole size to restrict out-of-focus illumination and adjust for the sample's level of fluorescence. Instead, Hiesinger chose a Leica resonance-scanning confocal (Leica TCS SP5), essentially a standard laser-scanning confocal microscope, but with a beam that oscillates at a very high resonance frequency (8,000 Hz, as opposed to 400-1,000 Hz). This translates into a resolution of about 15 frames per ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH