Pure Pursuits

Techniques for simpler, cheaper, and better antibody purification

Written byKatherine Bagley
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

NO COLUMN REQUIRED: Exposing monoclonal antibodies to multivalent haptens produces high-molecular-weight complexes that can be easily processed by precipitation. Basar Bilgiçer (center), who developed the technique, gives a demonstration of its simplicity to graduate students Nathan Alves (left) and Michael Handlogten (right) in his lab at the University of Notre Dame. WES EVARD, COLLEGE OF ENGINEERING, UNIVERSITY OF NOTRE DAME

Monoclonal antibodies have become increasingly important in biomedicine in the past decade, not just in research but also in designing novel therapeutics, particularly to treat cancer. The pharmaceutical industry produces roughly 10 tons of monoclonal antibodies each year, and more than half of all drugs in development use them.

Producing these molecules is fairly straightforward: researchers first expose mice to an antigen that spurs the rodents’ immune systems to generate the antibody of interest. They then remove the animals’ antibody-producing immune cells and fuse them to myeloma cells, which grow well in culture, creating hybridomas that act as antibody factories.

However, separating the antibodies from other cellular components in the cell-culture medium can be costly, technically difficult, and time-consuming. Typically, the antibodies must be filtered ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH