Pure Pursuits

Techniques for simpler, cheaper, and better antibody purification

| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

NO COLUMN REQUIRED: Exposing monoclonal antibodies to multivalent haptens produces high-molecular-weight complexes that can be easily processed by precipitation. Basar Bilgiçer (center), who developed the technique, gives a demonstration of its simplicity to graduate students Nathan Alves (left) and Michael Handlogten (right) in his lab at the University of Notre Dame. WES EVARD, COLLEGE OF ENGINEERING, UNIVERSITY OF NOTRE DAME

Monoclonal antibodies have become increasingly important in biomedicine in the past decade, not just in research but also in designing novel therapeutics, particularly to treat cancer. The pharmaceutical industry produces roughly 10 tons of monoclonal antibodies each year, and more than half of all drugs in development use them.

Producing these molecules is fairly straightforward: researchers first expose mice to an antigen that spurs the rodents’ immune systems to generate the antibody of interest. They then remove the animals’ antibody-producing immune cells and fuse them to myeloma cells, which grow well in culture, creating hybridomas that act as antibody factories.

However, separating the antibodies from other cellular components in the cell-culture medium can be costly, technically difficult, and time-consuming. Typically, the antibodies must be filtered ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Katherine Bagley

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide