Putting Phytoremediation into Action

Researchers studying the use of bacteria and plants to remove toxins from the soil must better communicate their results if they want their techniques to be used by practitioners in the field.

Written byÉric Montpetit and Erick Lachapelle
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

GREEN CLEAN MACHINES: A site near the city of Varennes, Quebec, where researchers on the Genome Canada project tested the efficacy of various willow cultivars to remediate soil polluted by petroleum hydrocarbons PHOTO COURTESY OF MICHEL LABRECQUE

Despite the enactment of comprehensive regulations, soil contamination remains widespread in much of the industrialized world. Researchers have estimated there are more than 160,000 sites in Western Europe alone that contain pollutants at levels above acceptable thresholds (J Environ Public Health, 2013: 158764, 2013), and the problem is just as significant in the United States (Environ Sci Technol, 39:5567-74, 2005). Owing to the cost of ex situ remediation, many contaminated sites are left untreated, allowing toxic chemicals to leach into nearby ground or surface waters and be taken up by plants and animals. Ultimately, soil contamination poses substantial risks for human health, and much work remains to significantly remediate lands that are known to be contaminated. (See “Drugging the Environment” here.)

Over the past 20 ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH