Putting Phytoremediation into Action

Researchers studying the use of bacteria and plants to remove toxins from the soil must better communicate their results if they want their techniques to be used by practitioners in the field.

Written byÉric Montpetit and Erick Lachapelle
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

GREEN CLEAN MACHINES: A site near the city of Varennes, Quebec, where researchers on the Genome Canada project tested the efficacy of various willow cultivars to remediate soil polluted by petroleum hydrocarbons PHOTO COURTESY OF MICHEL LABRECQUE

Despite the enactment of comprehensive regulations, soil contamination remains widespread in much of the industrialized world. Researchers have estimated there are more than 160,000 sites in Western Europe alone that contain pollutants at levels above acceptable thresholds (J Environ Public Health, 2013: 158764, 2013), and the problem is just as significant in the United States (Environ Sci Technol, 39:5567-74, 2005). Owing to the cost of ex situ remediation, many contaminated sites are left untreated, allowing toxic chemicals to leach into nearby ground or surface waters and be taken up by plants and animals. Ultimately, soil contamination poses substantial risks for human health, and much work remains to significantly remediate lands that are known to be contaminated. (See “Drugging the Environment” here.)

Over the past 20 ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems