Recycling Kidneys

Researchers are trying to use discarded donor kidneys as a scaffold for building new ones.

Written byKate Yandell
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

FLICKR, BEN ALEXANDERMany kidneys from deceased donors are thrown away each year due to damage. A paper published in Biomaterials earlier this month (May 13) suggests that they could be put to use as raw material for engineering new kidneys.

The study’s authors treated discarded human kidneys with a detergent, which cleared the organ of cells and left only the cells’ extracellular matrices. The eventual plan is to grow the patients’ own cells on the scaffold, producing a kidney that the patients would be less likely to reject than an ordinary transplant. “These kidneys maintain their innate three-dimensional architecture, their basic biochemistry, as well as their vessel network system,” coauthor Giuseppe Orlando, a transplant surgeon and regenerative medicine researcher at Wake Forest Baptist Medical Center, said in a statement.

The scientists tested the scaffold for antigens that might cause a patient to reject the organ and found that they had been eliminated along with the cells. When the researchers transplanted the modified kidneys into pigs ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH