Reducing Repetition While Building Biopolymers

A free algorithm helps synthetic biologists decide which codons to use to encode repetitive proteins using the least-repetitive DNA sequence possible.

Written byKate Yandell
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

FLICKR, DUNCAN HULLDuke University researchers have created a new algorithm to determine the least-repetitive DNA sequence that can encode any given protein, according to a paper published last week (January 4) in Nature Materials. The algorithm, which is freely available online, should allow researchers to more easily experiment with biopolymers and other structurally repetitive polypeptides.

“Repetitive proteins can have important structural and functional properties of interest to materials science and biomedicine, and being able to easily study them and build many variants is quite exciting,” Daniel Goodman, a synthetic biologist at the Wyss Institute for Biologically Inspired Engineering at Harvard University who was not involved in the study, wrote in an email to The Scientist.

“We’re providing a new tool to empower people to do new and cool polymer science using amino acid building blocks,” said study coauthor Ashutosh Chilkoti, a professor of biomedical engineering at Duke.

Our cars, homes, and workplaces are filled with polymers—often plastics. “The polymers that have changed the world have largely been synthetic,” Chilkoti said. New biopolymers, encoded genetically, will be biodegradable and nontoxic. And ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform