Retrotransposon gene codes for placenta

'Domesticated' gene may have helped originate placenta in mammals

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Researchers have provided the first direct evidence that an evolutionarily conserved, retrotransposon-derived gene is essential for embryonic development, at least in mice, according to a study published in Nature Genetics this week. The findings suggest that the mammal-specific gene, Peg10, could have transformed egg-laying mammals into placental mammals more than 92 million years ago.

This gene family originated before the emergence of placental mammals, agreed Jean-Nicolas Vollf, at the University of Würzburg in Germany, who did not participate in the study. "There is one example of the genes being present in marsupials," he said, meaning that the domestication of the retrotransposon -- which led to the formation of the Peg10 gene family -- occurred before the formation of placental mammals.

The Japanese team, led by Tomoko Kaneko-Ishino from Tokai University in Japan, studied Peg10 knockout mice made by recombinant and cloning techniques, and found that no embryos survived beyond 10.5 ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Cathy Holding

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio