Scent Sorting

In discrete neuron networks linking odor receptors in the nose to higher brain areas, similar odors are parsed by deep-lying cells with narrow odor selectivity.

Written byDan Cossins
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

PARSING SMELL: Within every glomerular module, olfactory sensory neurons (OSN) activated by a particular range of odorants connect to a network of deeper, downstream neurons. Juxtaglomerular cells, located in the first layer (1), respond to a wider range of odorants than tufted cells, neurons in the next layer that relay signals to higher brain areas (2). Mitral cells, a type of neuron located in the deepest layer of the module, respond to even fewer odorants (3). The particular set of odorants that activate the mitral cells depends on the lateral location of each cell within this layer.
View full size JPG | PDF
© SCOTT LEIGHTON

The paper
S. Kikuta et al., “Odorant response properties of individual neurons in an olfactory glomerular module,” Neuron, 77:1122-35, 2013.

Although the human sense of smell is feeble compared to that of many animals, it is acute enough to distinguish between very similar odors. Researchers know a lot about how our 400 or so distinct types of odor receptors combine to differentiate roughly 10,000 odors. But the neuronal architecture underlying our ability to precisely discriminate between slightly different odorant molecules picked up by the same receptor is less well understood.

In humans, the outer layer of the olfactory bulb, the most forward part of the brain, which lies atop the back of the nasal passage, is comprised of roughly 5,500 ball-like neural junctions called glomeruli. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel