Scent Sorting

In discrete neuron networks linking odor receptors in the nose to higher brain areas, similar odors are parsed by deep-lying cells with narrow odor selectivity.

Written byDan Cossins
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

PARSING SMELL: Within every glomerular module, olfactory sensory neurons (OSN) activated by a particular range of odorants connect to a network of deeper, downstream neurons. Juxtaglomerular cells, located in the first layer (1), respond to a wider range of odorants than tufted cells, neurons in the next layer that relay signals to higher brain areas (2). Mitral cells, a type of neuron located in the deepest layer of the module, respond to even fewer odorants (3). The particular set of odorants that activate the mitral cells depends on the lateral location of each cell within this layer.
View full size JPG | PDF
© SCOTT LEIGHTON

The paper
S. Kikuta et al., “Odorant response properties of individual neurons in an olfactory glomerular module,” Neuron, 77:1122-35, 2013.

Although the human sense of smell is feeble compared to that of many animals, it is acute enough to distinguish between very similar odors. Researchers know a lot about how our 400 or so distinct types of odor receptors combine to differentiate roughly 10,000 odors. But the neuronal architecture underlying our ability to precisely discriminate between slightly different odorant molecules picked up by the same receptor is less well understood.

In humans, the outer layer of the olfactory bulb, the most forward part of the brain, which lies atop the back of the nasal passage, is comprised of roughly 5,500 ball-like neural junctions called glomeruli. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies