Seals Help Oceanographers Explore Underwater

Data collected by elephant seals in Antarctic waters provide a closer look at the processes driving ocean circulation.

Written byCatherine Offord
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

OMMAGERD, YOU’RE A SCIENTIST!: In Prydz Bay, Antarctica, a male southern elephant seal sports a state-of-the-art miniaturized conductivity-temperature-depth sensor that links to a data-collecting satellite.PHOTO BY CLIVE R. McMAHON

In the winter of 1999, Guy Williams took a trip to the Antarctic. A PhD student in oceanography at the University of Tasmania, he had become fascinated with the role polynyas—unfrozen expanses of water surrounded by ice—play in the cooling of large water masses at the Earth’s poles. Joining a research expedition, he travelled south from Tasmania by ship through the ice to the Mertz Glacier polynya in East Antarctica. The goal: to take measurements that would help model ocean circulation.

The survey was successful, but the voyage itself was something of an eye-opener. “I was very excited about going to Antarctica,” Williams recalls, “but I soon realized that Antarctica in wintertime is another kettle of fish. I got a real insight into how difficult ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

November 2016

Nimble Neurons

The remarkable adaptability of the nervous system

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH