PIXABAY, GERD ALTMANN
Somatic mosaicism—the variation of the genome between individual cells—is particularly consequential in the brain. Neuroscientists have found that small changes to the genome of even a few neurons can have neurological consequences. In a study published in Nature Neuroscience this week (September 12), scientists set their sights on one source of this variation. Using single-cell sequencing and machine learning algorithms, they have examined the extent of long interspersed element-1 (LINE-1, or L1) retrotransposition in the healthy human brain.
In the 1940s, Barbara McClintock and colleagues discovered transposons, or “jumping genes,” scraps of DNA able to move from one position in the genome to another. By 2005, Fred “Rusty” Gage of the Salk Institute for Biological Studies and colleagues identified L1 transposons as a source of ...