“Silent” Mutation Linked to Worse Kidney Cancer Outcome

A synonymous mutation in the tumor suppressor gene BAP1 can result in loss of function of the protein without altering its amino acid sequence.

Written byKatarina Zimmer
| 6 min read
synonymous mutation bap1 kidney cancer clear-cell renal cell carcinoma

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

ABOVE: © ISTOCK.COM, BLACKJACK3D

For decades, researchers have viewed synonymous mutations as inconsequential quirks of the genome. Due to the way the genetic code is set up—where multiple three-base-pair codons can encode the same amino acid—mutations can arise that don’t change a protein’s amino acid sequence. Scientists have largely dismissed these anomalies as harmless oddities.

But like other historically underappreciated aspects of the genome, scientists are realizing that many “silent” mutations might not be so silent after all. Research suggests they’re often subject to selective pressure and could play a role in cancer, autism, and schizophrenia.

A study published online last week (February 12) in iScience adds to the mounting evidence that synonymous variants can have consequences. The authors describe a synonymous mutation in the gene BAP1 that was associated with a worse-than-expected prognosis in a kidney cancer patient. Their subsequent experiments suggest that the mutation has this effect by ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • katya katarina zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field of science and wanted to write about all of them. Following an internship with The Scientist in 2017, she’s been happily freelancing for a number of publications, covering everything from climate change to oncology. Katarina is a news correspondent for The Scientist and contributes occasional features to the magazine. Find her on Twitter @katarinazimmer and read her work on her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform