Site-Specific Recombinases

Image: Courtesy of Invitrogen AIDING RESEARCH INSIDE AND OUT: Recombinases allow scientists to easily move DNA between vectors in vitro (as shown above, using Invitrogen's Gateway technology). In vivo, they enable researchers to knockout genes in specific tissues, and at specific developmental times, facilitating the study of otherwise "embryonic lethal" genes. Transgenic mice. Drought-tolerant canola. Medication-producing plants. And the still-unrealized potential of gene therapy. These

Written byGail Dutton
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Transgenic mice. Drought-tolerant canola. Medication-producing plants. And the still-unrealized potential of gene therapy. These four represent just a small sampling of the power of gene-targeting technology. But as researchers are painfully aware, gene targeting could be more powerful still. The problem, explains Michael Fernandez, director of science at the Pew Initiative on Food and Biotechnology, "is that whenever genes go into plants [or animals], they may inadvertently alter another function." This is possible largely because of the randomness of gene insertion: An inserted gene may end up anywhere in the genome. As a result, the relocated gene may not be expressed in the desired way or even at all. "Gene transfer normally is random," says Tom Hodges, J.C. Arthur distinguished professor emeritus, Purdue University. "Sometimes genes are expressed well, sometimes not, and they aren't always passed to the next generation properly."

The goal, therefore, is to insert the gene into ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies