Specialized Neurons Encode Social Learning in Humans

Activity in the anterior cingulate cortex corresponds with observing the behavior of others when their actions, or the subsequent outcomes, don’t match one’s expectation.

Written byKaren Zusi
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

FLICKR, SAGESOLARAt least one type of social learning, or the ability to learn from observing others’ actions, is processed by individual neurons within a region of the human brain called the rostral anterior cingulate cortex (rACC), according to a study published today (September 6) in Nature Communications. The work is the first direct analysis in humans of the neuronal activity that encodes information about others’ behavior.

“The idea [is] that there could be an area that’s specialized for processing things about other people,” says Matthew Apps, a neuroscientist at the University of Oxford who was not involved with the study. “How we think about other people might use distinct processes from how we might think about ourselves.”

During the social learning experiments, the University of California, Los Angeles (UCLA) and CalTech–based research team recorded the activity of individual neurons in the brains of epilepsy patients. The patients were undergoing a weeks-long procedure at the Ronald Reagan UCLA Medical Center in which their brains were implanted with electrodes to locate the origin of their epileptic seizures. Access to this patient population was key to the study. “It’s a very rare dataset,” says ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems