Sperm RNAs Transmit Stress

Stressed male mice can pass on an abnormal stress response to their offspring via microRNAs found in sperm, a study shows.

Written byKate Yandell
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

FLICKR, BERIT WATKINIn the past several years, it has become clear that parents’ life experiences can alter germ cells epigenetically, and that events in parents’ lives can influence the health and behavior of their children and even grandchildren. But it can be difficult to establish a causal connection between epigenetic changes and changes in behavior and health. Researchers at the University of Pennsylvania led by Tracy Bale have now demonstrated that an increase in a group of microRNAs (miRNAs) in sperm from stressed mice can lead to altered stress response in adult offspring. The work, published today (October 19) in PNAS, shows that simultaneously injecting nine miRNAs into mouse zygotes recapitulates the changes found in the offspring of stressed mice.

“I think it’s a fine paper [and a] well-designed study,” said Michael Skinner, who studies epigenetic inheritance at Washington State University and was not involved in the study. “It shows a very nice role for noncoding RNA at the early embryonic stage for transmission of the transgenerational phenotype.”

Oliver Rando, who studies paternal effects of diet in mammals at the University of Massachusetts Medical School but was not involved in the study, pointed out that the findings reinforce those of another study led by Isabelle Mansuy at the University of Zurich, Switzerland, which showed that injecting sperm RNAs into zygotes recapitulates the transgenerational effects of trauma. This latest study improves on the previous one by identifying specific miRNAs that transmit stress to offspring rather than ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH