Surprising Similarities in Divergent Genomes

Researchers find genome-wide evidence of convergent evolution between bats and dolphins.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Greater horseshoe batsGARETH JONESBats and dolphins each evolved echolocation systems independently. But despite the different origins and mechanisms of their sonar senses, similar genes appear to be involved. Now, a report published today (September 4) in Nature reveals that the extent of such genetic convergence is more widespread than originally thought, with evidence of similar sequence changes across bat and dolphin genomes.

“This is a great example of how taking a genomic approach really can tell you a lot about . . . how organisms adapt in general, and how big a proportion of the genes can be affected by an individual’s environment and their adaptation to it,” said Judith Mank, chair of evolutionary and comparative biology at University College London, who was not involved in the study. “I was really surprised by the degree of convergence,” she said.

Bats and toothed whales, the phylogenetic order to which dolphins belong, diverged from one another approximately 80 million years ago. Since then, both have evolved echolocation—a system of emitting and receiving sound waves that enables the animals to locate objects and prey.

Even within the bat family echolocation ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research