Surviving the Ice Age

A beginner’s guide to freezing and thawing pluripotent stem cells

Written bySarah C.P. Williams
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

COMPOSITE IMAGE. © JEZPERKLAUZEN/ISTOCKPHOTO.COM; © SBAYRAM/ISTOCKPHOTO.COMOver the past decade, pluripotent stem cells have provided researchers in diverse fields with a new tool to probe developmental biology, define the underlying pathology of diseases, and develop cell-based therapies for genetic disorders. Whatever the source of the stem cells used in a lab—harvested from IVF embryos, garnered from another lab’s cell lines, or reprogrammed from adult cells using chemical factors—they’ll likely all have one destination in common: the freezer.

Whether a lab is managing large collections of individual patient samples or simply saving cell lines to be used for research down the road, freezing cells offers a solution to long-term storage problems and a source for replicating experiments in the future.

But if you’re adding stem cells to your research repertoire, you will need to acquaint yourself with some cryoprotection stumbling blocks. Stem cells, it turns out, generally aren’t as easy to freeze as differentiated cells. You can’t just take your favorite cell-freezing reagent, apply your usual methods, and stick the cells in a box in the freezer.

When scientists first began working with human embryonic stem cells—and putting cell colonies on ice for future use—they found that only around 5 percent of cells ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH