Synaptic transmission tenets challenged

Two distinct pools of synaptic vesicles appear to be involved in the spontaneous release of neurotransmitters and in neurotransmission triggered by a stimulus, according to Ege T. Kavalali and colleagues from University of Texas Southwestern Medical Center.

Written byMitchell Maltenfort
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Two distinct pools of synaptic vesicles appear to be involved in the spontaneous release of neurotransmitters and in neurotransmission triggered by a stimulus, according to Ege T. Kavalali and colleagues from University of Texas Southwestern Medical Center. Their findings1 raise questions about Bernard Katz's fundamental theory of neurotransmission.

Kavalali's team studied the spontaneous fusion of synaptic vesicles in rat hippocampal cells, using dyes that fluoresce when inside a cell membrane. When the researchers allowed vesicles to fill in the absence of network activity and then subjected them to stimulation, the loss of dye was slow. When they induced activity, vesicle destaining showed an initial rapid phase, then slowed to the rate of spontaneously loaded vesicles.

The researchers concluded that there might be two types of recycling vesicles. Spontaneously recycling vesicles are reluctant to release neurotransmitters during stimulation, but do so readily in the absence of activity. Activity-dependent vesicles show the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies