Synaptic Vesicles: Reused or Recycled?

VISUALIZING VESICLES:© 2003 Nature Publishing GroupIn A, researchers used a fluorescent protein (synaptopHluorin) to visualize synaptic vesicle movement. Some vesicles stay open briefly before retrieval (kiss-and-run). Others stay open longer but also don't collapse fully into the plasma membrane (compensatory). Still others collapse and are not retrieved until another stimulus is delivered (stranded). In B, another group used a dye FM1-43, to study vesicle retrieval and found that single v

Written byJill Adams
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© 2003 Nature Publishing Group

In A, researchers used a fluorescent protein (synaptopHluorin) to visualize synaptic vesicle movement. Some vesicles stay open briefly before retrieval (kiss-and-run). Others stay open longer but also don't collapse fully into the plasma membrane (compensatory). Still others collapse and are not retrieved until another stimulus is delivered (stranded). In B, another group used a dye FM1-43, to study vesicle retrieval and found that single vesicles can undergo many rounds of fusion. Single electrical stimuli caused only partial loss of dye. Further release from the same vesicle could sometimes be evoked, but not until a dead time of around 23 seconds had passed. (From S.O. Rizzoli, W.J. Betz, Nature, 423:591–2, 2003.)

Communication between neurons – the stuff of our senses, emotions, and memories, as well as motor and visceral control – relies on chemical messengers. Packaged into tiny membrane-enclosed vesicles, neurotransmitters are delivered when a nerve ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series