T-Cell Signaling Pathways Decoded In Silico

Researchers have spent decades determining how proteins interact with each other in complex signaling networks by studying these relationships one at a time in isolation.

Written bySarah Rothman
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

© 2005 AAAS

Schematic of Bayesian network inference using multidimensional flow cytometry data. Bayesian network analysis of the data from flow cytometry of 11 phosphoproteins and phospholipids in individual cells extracts an influence diagram reflecting the causal relationship between signaling network molecules.

Researchers have spent decades determining how proteins interact with each other in complex signaling networks by studying these relationships one at a time in isolation. This approach may have been necessary, but the resulting maps are accordingly suspect. "The average signaling map is a composite of data from everything from nematodes to yeast ... and although we draw an arrow between two molecules, whether it works in any given cell type and the strength, and timing and conditions are very contextual," says Stanford University researcher Garry Nolan.

Using a largely computational approach, Nolan and colleagues at the Massachusetts Institute of Technology quickly and successfully reverse-engineered a T-cell signaling ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies