T-cell Tracker: A Profile of Wendy Havran

By uncovering novel properties of a unique population of T cells, the Scripps Research Institute immunologist has helped to redefine the immune cells, uncovering their role in wound healing.

Written byAnna Azvolinsky
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Since starting her own laboratory at The Scripps Research Institute in 1991, immunologist Wendy Havran has been searching for the answer to a single question: What activates gamma-delta T cells? These immune cells make up a small proportion of the T cells in blood and lymphoid organs but are abundant in body barrier tissues, residing permanently in the skin of mice and humans. They act as rapid responders, recognizing tissue damage and secreting growth factors and other signaling molecules that alert immune cells that aren’t in the skin to migrate and assist in healing.

“During resting conditions when there is no damage, the skin gamma-delta T cells . . . have these dendrites that they extend and retract, touching their epithelial cell neighbors to survey for any damage or disease,” Havran explains. When there is damage, the T cells gather, migrate to the damaged site, and begin to repair the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile

Published In

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH