T Cells That Drive Toxic Shock in Mice Identified

Overzealous activity by mucosa-associated invariant T (MAIT) cells in response to bacterial toxins can lead to illness instead of stopping it.

Written byAshley Yeager
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Methicillin-resistant Staphylococcus aureus (brown) is one of the strains of staph that can cause sepsis.WIKIMEDIA, NIAIDWhen a subset of T cells tries to fend off toxins, or superantigens, secreted by common pathogenic bacteria, the response can be harmful, new research shows. Working with superantigens from strains of bacteria such as Staphylococcus and Streptococcus in mice and in cultured human cells, scientists found that when immune cells called mucosa-associated invariant T (MAIT) cells detect bacterial toxins, they pump out loads of inflammatory proteins—an immune response that may be the root of fatal illnesses, such as toxic shock syndrome and sepsis, the team reports today (June 20) in PLOS Biology.

“Our study has now unmasked a new, fast-acting, and extremely powerful culprit in the context of superantigens-mediated illnesses,” Mansour Haeryfar of Western University in London, Ontario, tells The Scientist in an email.

Until now, researchers thought well-documented T cells, such as CD4+ and CD8+ cells, were the primary source of proinflammatory proteins called cytokines, which contribute to the cytokine storm at the root of toxic shock, sepsis, and similar conditions. These cells respond relatively quickly to infection but researchers noticed an incredibly rapid response to superantigens, one that was perhaps too fast for CD4+ and CD8+ cells T cells to drive the initial cytokine release.

So Haeryfar and colleagues went looking for fast-acting T cells. The team targeted MAIT cells, which were first identified in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies