Telling Body Time

A new method could make it easier to assess a person's circadian rhythms, paving the way for increased drug effectiveness.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Circadian rhythms dictate the 24-hour shifts in gene expression, protein levels, and various cellular processes throughout the day, such as melatonin affecting our sleep-wake cycle. Such changes in cell activity—in particular, cyclical changes in metabolism— can greatly influence the effectiveness of a drug and the severity of its side effects, depending on when it is administered.

However, each individual has unique circadian timing, with "body time" being offset by as much as 6 hours between people, making it difficult—if not impossible—for doctors to take into account when giving drugs. Previous attempts to assess a person's body time have relied on intense, repeated sampling procedures that were impractical for clinical applications. But in a study, published yesterday (August 27) in Proceedings of the National Academy of Sciences, researchers have demonstrated a new method that requires only two blood samples, taken 12 hours apart.

"Due to a combination of genetics and environment, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Hayley Dunning

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours