The Optical Trap

When Art Ashkin, Steve Chu, and their colleagues at Bell Labs in Holmdel, NJ, first invented optical tweezers, they spent their days pushing around tiny, glass spheres.

| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

When Art Ashkin, Steve Chu, and their colleagues at Bell Labs in Holmdel, NJ, first invented optical tweezers, they spent their days pushing around tiny, glass spheres. But it wasn't long after their 1986 discovery that they began to think about biology.

"We were trapping submicron particles of Tobacco mosaic virus," Ashkin says. "We left the samples under the microscope for a day or so, and then we discovered strange particles that seemed to be self-propelled." When they looked into the trap with a higher-quality microscope, they confirmed what the mysterious objects were. "They discovered bacteria, 350 years too late," jokes Howard Berg, who was then studying bacterial flagella at the Rowland Institute in Cambridge, Mass.

The tweezers' intense green light quickly killed the bacteria, a process Ashkin dubbed "opticution." But once the team switched to an infrared laser, the bacteria could be kept alive indefinitely, even reproducing in the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Don Monroe

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio