The Optical Trap

When Art Ashkin, Steve Chu, and their colleagues at Bell Labs in Holmdel, NJ, first invented optical tweezers, they spent their days pushing around tiny, glass spheres.

| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

When Art Ashkin, Steve Chu, and their colleagues at Bell Labs in Holmdel, NJ, first invented optical tweezers, they spent their days pushing around tiny, glass spheres. But it wasn't long after their 1986 discovery that they began to think about biology.

"We were trapping submicron particles of Tobacco mosaic virus," Ashkin says. "We left the samples under the microscope for a day or so, and then we discovered strange particles that seemed to be self-propelled." When they looked into the trap with a higher-quality microscope, they confirmed what the mysterious objects were. "They discovered bacteria, 350 years too late," jokes Howard Berg, who was then studying bacterial flagella at the Rowland Institute in Cambridge, Mass.

The tweezers' intense green light quickly killed the bacteria, a process Ashkin dubbed "opticution." But once the team switched to an infrared laser, the bacteria could be kept alive indefinitely, even reproducing in the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Don Monroe

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours