Thermo Fisher Scientific: Handling Volumes in the Wet Lab

Accurate and precise manual pipetting approximates the diligence and dedication of an art form. Being mindful of the causes that allow discrepancies to creep into your pipetting and taking preventive measures will ensure the quality and reproducibility of your data.


Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Precise and repeated dispensing of small and large volumes of liquids is central to ‘wet lab research’ in biological laboratories. Over the past few decades wet lab research has become increasingly fast-paced and hi-tech, covering the spectrum between low and high throughput assays that bank on the quick and accurate transfer of milliliter to sub-microliter volumes of diverse liquid samples and reagents. The manual pipette is therefore a universal fixture in all wet labs.

A number of errors can creep into your experiment during liquid handing that can be classified into systematic errors (accuracy) that measure how close the volume measured is to the desired reading, and random errors (precision) that measure how close the dispensed volume is to other dispensations of the same reading, assessing the reproducibility of the device1. A specific measure of transferred liquid can contribute to both systematic and random errors.

Factors Impacting Pipetting

Just like a magnificent rendition of Mozart by a world famous symphony can be ruined by an erring cell phone, the masterful accuracy and precision of the best pipettes can be compromised by a rise in the temperature, the angle at which you tilt the tip in the reagent, the force and speed with which you press and release the plunger, failing to consider the physical properties of the liquid, or a wobbly tip at the pipette’s nose. Given the high frequency of liquid handling in any wet lab, and the virtual impossibility of detecting miniscule discrepancies between individual pipetting dispensations by the naked eye that can have a significant impact on your results, it is crucial to take precautions against potential sources of variability rather than rectify a problem post hoc. An overlooked variable can result in expensive re-do’s, loss of precious samples and reagents, and irrecoverable delays.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio