Thermo Fisher Scientific: Handling Volumes in the Wet Lab

Accurate and precise manual pipetting approximates the diligence and dedication of an art form. Being mindful of the causes that allow discrepancies to creep into your pipetting and taking preventive measures will ensure the quality and reproducibility of your data.

Written byThermo Fisher Scientific
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Precise and repeated dispensing of small and large volumes of liquids is central to ‘wet lab research’ in biological laboratories. Over the past few decades wet lab research has become increasingly fast-paced and hi-tech, covering the spectrum between low and high throughput assays that bank on the quick and accurate transfer of milliliter to sub-microliter volumes of diverse liquid samples and reagents. The manual pipette is therefore a universal fixture in all wet labs.

A number of errors can creep into your experiment during liquid handing that can be classified into systematic errors (accuracy) that measure how close the volume measured is to the desired reading, and random errors (precision) that measure how close the dispensed volume is to other dispensations of the same reading, assessing the reproducibility of the device1. A specific measure of transferred liquid can contribute to both systematic and random errors.

Factors Impacting Pipetting

Just like a magnificent rendition of Mozart by a world famous symphony can be ruined by an erring cell phone, the masterful accuracy and precision of the best pipettes can be compromised by a rise in the temperature, the angle at which you tilt the tip in the reagent, the force and speed with which you press and release the plunger, failing to consider the physical properties of the liquid, or a wobbly tip at the pipette’s nose. Given the high frequency of liquid handling in any wet lab, and the virtual impossibility of detecting miniscule discrepancies between individual pipetting dispensations by the naked eye that can have a significant impact on your results, it is crucial to take precautions against potential sources of variability rather than rectify a problem post hoc. An overlooked variable can result in expensive re-do’s, loss of precious samples and reagents, and irrecoverable delays.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control