Toward a “Clickable Plant”

By conscious design, plant genomics initiatives have devoted initial resources to new technology development. Part of that money went to developing functional genomics approaches, and part to new sequencing technologies.

Written byJane Salodof MacNeil
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

Courtesy of Lynx Technologies

By conscious design, plant genomics initiatives have devoted initial resources to new technology development. Part of that money went to developing functional genomics approaches, and part to new sequencing technologies. Lynx's Massively Parallel Signature Sequencing (MPSS) approach, shown here, can decipher millions of sequence fragments – each represented by one bead in this image – simultaneously.

Plants are quieter than people. They might flaunt pollen at a passing bee or exude fragrance, but except for flashy bloomers, most do little to attract attention. Perhaps it is fitting, then, that plant genome initiatives have kept a low profile relative to the human genome project. Yet the lack of fanfare does not stem – so to speak – from a lack of merit: These initiatives are transforming how biologists do plant science and expanding what they hope to accomplish.

Key to that transformation, as in many other disciplines, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH