Trading Up in Animal Research

So, you've been working with small animals and you want to move up to larger experimental models.

Written byGraciela Flores
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

So, you've been working with small animals and you want to move up to larger experimental models. Perhaps you're looking to more closely emulate the human condition, or maybe you're developing a vaccine for a specific large animal species. In any case, how do you go about it? Here are 10 things you need to do.

You can work with dogs, cats, cows, pigs, horses, or chimps, among others; what you choose depends largely on your needs. Cats make good models for allergy studies, cattle are useful for prion work, and monkeys are good for research into cognition and social behavior. "For human disease, I think the pig is one of the best models there is, because its physiology is so similar to that of humans," says Max F. Rothschild of Iowa State University, and National Pig Genome Coordinator at the US Department of Agriculture. "Pigs can even get diabetes."

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH