Transfer RNA Model, 1975

By Deborah Douglas Transfer RNA Model, 1975 A wire model of tRNA. Top left is the “anticodon loop.” Courtesy of Deborah Douglas / MIT Museum In 1965, Cornell biochemist Robert Holley deciphered the 77 nucleotide sequence of transfer RNA. Three years later, Holley was awarded the Nobel Prize for this work, but already the race to determine tRNA’s three-dimensional structure was in full swing. At least six laboratories around the world

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

In 1965, Cornell biochemist Robert Holley deciphered the 77 nucleotide sequence of transfer RNA. Three years later, Holley was awarded the Nobel Prize for this work, but already the race to determine tRNA’s three-dimensional structure was in full swing. At least six laboratories around the world tried various x-ray diffraction techniques, but the small, amino acid–carrying molecule did not crystallize very well under standard procedures.

Alexander Rich, a biophysicist at the Massachusetts Institute of Technology, was the first to devise a solution. Rich and his MIT colleagues added the chemical spermine, which stabilized tRNA’s folding. This technique allowed them to prepare high-resolution crystals from yeast phenylalanyl tRNA and image them using x-ray diffraction. In December 1972, the MIT team announced the shape of that tRNA molecule at 5.5 Å resolution, revealing the outlines of the molecule but not the surface detail. A month later, they had the resolution down to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Deborah Douglas

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo