Translation Revelation

By Jef Akst Translation Revelation More findings confirm that small RNAs work in mysterious ways. Fluorescent FT protein in the phloem of an Arabidopsis plant. © Jean-Francois Podevin / Photo Researchers, Inc. Nearly 20 years after its discovery, RNA interference (RNAi) is part of biology’s orthodoxy. Small RNA molecules can disrupt gene expression by degrading messenger RNAs (mRNAs) on their way to becoming proteins, or

Written byJef Akst
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Nearly 20 years after its discovery, RNA interference (RNAi) is part of biology’s orthodoxy. Small RNA molecules can disrupt gene expression by degrading messenger RNAs (mRNAs) on their way to becoming proteins, or otherwise interfering with translation. But the discovery that these same small RNA molecules might be able to do just the opposite—enhance gene expression—was somewhat heretical.

In 2007, molecular biologist Shobha Vasudevan of Yale University and her colleagues produced the unanticipated findings: Small RNA molecules known to be involved in RNAi, known as microRNAs (miRNAs), can activate translation, promoting the conversion of mRNAs to proteins. It was a “surprise finding,” Vasudevan recalls.

Further investigation revealed that activation occurred only during cell-cycle arrest, induced by serum starvation. In actively growing cells, on the other hand, miRNAs suppressed translation. The exact mechanism of activation is unclear, Vasudevan says, but it appears to involve the recruitment of Argonaute (AGO) proteins—known participants ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies