Trials of the Heart

Adult human stem cells may offer the opportunity to use one of biomedical science's most promising technologies without the ethical dilemmas of embryonic cells.

| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Adult human stem cells may offer the opportunity to use one of biomedical science's most promising technologies without the ethical dilemmas of embryonic cells. But whether the cells' plasticity-or ability to ignore germ-line heritage and differentiate into therapeutically useful tissues-warrants clinical application at this stage remains controversial.

"We're still debating it," says Amy Wagers, Harvard Medical School investigator and plasticity critic. "It's too early to tell which way things will fall." Biologists generally agree that even the most potent adult stem cells can't approach the therapeutic power of embryonic stem cells. Nevertheless, at least a dozen clinical trials based on adult-cell plasticity have commenced in patients with serious heart disease – prematurely, some contend.

In embryonic development, cells form three germ layers: ectoderm, mesoderm, or endoderm. Generally, biologists considered cell differentiation overwhelmingly unidirectional and progressively restrictive. A cell fated to make neurons could not make blood cells; a stem cell ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Christopher Thomas Scott

    This person does not yet have a bio.

Published In

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio