Tricks For Human Embryonic Stem Cells

Your stem cells have just arrived.

Written byJeffrey Perkel
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

Erica P. Johnson

Your stem cells have just arrived. Now, how do you convert those frozen vials into a thriving, human embryonic stem cell (hESC) research program? Last month I traveled to Wisconsin to get a primer from Daisy Manning, head instructor of a training course at the WiCell Research Institute in Madison, called "Introduction to Human Embryonic Stem Cell Culture Methods."

In a special student lab overlooking a nondescript research park through bulletproof glass, Manning took me through a gratis crash course on hESCs – a one-day version of the typically three-day class. Two hundred twenty students have rotated through this lab since WiCell began offering the class in 2003, paying $900 each for the opportunity. The class covers every aspect of basic stem cell culture, from preparation of the murine embryonic fibroblast (MEF) feeder layer to freezing down hESCs – everything but directed differentiation.

Manning encourages all new ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH