U.K. Breakthrough Bolsters Radio analytical Imaging

Methods for quantifying radioisotopes on membranes, gels, and microtiter trays are fundamental to molecular biology and related research areas. Until recently, these methods were difficult, tedious, and time-consuming, requiring the scientist to expose the plates to X- ray film for periods ranging from a few hours to a week or more. But a new method for identifying and classifying bacteria by imaging the radioisotope distribution has been developed by the Department of Reproductive Physiology

Written byBernard Watson
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

But a new method for identifying and classifying bacteria by imaging the radioisotope distribution has been developed by the Department of Reproductive Physiology at St. Bartholomew’s Hospital Medical College in London.

A team headed by Robert Silman was investigating the translation of mRNA labeled with 35S while researching the ACTH peptide hormones of the pituitary gland. They were identifying the translation products by polyacrylamide gel electrophoresis and autoradiography, when on one occasion they unknowingly laced their samples with bacteria. Many unexpected bands, resembling the bar codes on supermarket merchandise, appeared in the autoradiograph.

With help from the Department of Medical Microbiology at St. Bartholomew’s, the team learned that the band patterns were specific to individual strains of bacteria. Within a few weeks it became clear that the accidental contamination had spawned a technique capable of discriminating between organisms with a rare degree of sophistication.

Silman’s group then constructed a database ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control