Uncommonly Rare

How one of the rarest neurodegenerative diseases could lend insight into ubiquitous neuroprotective processes

Written byKerry Grens
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

CHAPERONE PROBLEMS: One of the NCL patients Milen Velinov and colleagues studied had characteristic storage inclusions in peripheral lymphocytes (a). Another showed similar inclusions in cells throughout the central nervous system (b).DOI:10.1371/JOURNAL.PONE.0029729.G002Kufs disease type B, also called autosomal dominant adult neuronal ceroid lipofuscinosis (ANCL), is a particularly nefarious malady, even as neurodegenerative conditions go. Beginning in young adulthood, people with the disease develop dementia, difficulty with movement, and changes in personality. After a decade or so of cognitive decline, Kufs patients succumb, rarely making it to their 45th birthday.

Other forms of NCL even strike children, affecting about one in 12,500 globally. But the adult form of the disease is exceptionally rare, with fewer than 200 cases reported worldwide, says Milen Velinov, who treats patients with NCL at Albert Einstein College of Medicine and directs the Genetic Services program at the New York State Institute for Basic Research in Developmental Disabilities, both in New York City.

From genetic studies in recent years it had become clear that NCL is actually a cluster of diseases with different genetic roots, but “we did not have any idea what the gene of this condition [ANCL] is,” says Velinov. A few years ago, he and his colleagues set out to find the genetic culprits. Not knowing where to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform