University Briefs

When Charles S. Johnson and his colleagues designed an experiment that standard nuclear magnetic resonance equipment couldn't handle, they decided to build a unit that could. The result: an electrophoretic NMR, a device that combines electrophoresis (a method of separating and identifying large molecules) and high-resolution NMR (a means of performing chemical analyses). "We're doing NMR in the presence of a large electric field," explains Johnson, Smith Professor of Chemistry at the University

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

When Charles S. Johnson and his colleagues designed an experiment that standard nuclear magnetic resonance equipment couldn't handle, they decided to build a unit that could. The result: an electrophoretic NMR, a device that combines electrophoresis (a method of separating and identifying large molecules) and high-resolution NMR (a means of performing chemical analyses). "We're doing NMR in the presence of a large electric field," explains Johnson, Smith Professor of Chemistry at the University of North Carolina, Chapel Hill. The electric field causes molecules to move at different velocities through an aqueous solution or gel, depending on the molecule's size and electrical charge. This process can help spread out overlapping NMR spectra. The novel components, which, according to Johnson, wouldn't cost companies much to develop, could be incorporated easily into commercially available machines. At present, Johnson and his collaborators are using ENMR to investigate the use of vesicles - artificial, hollow, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies