Viral micro RNAs identified

Genome-encoded micro RNAs isolated from Epstein-Barr virus, but their functions are unclear

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A paper published in this week's Science reports for the first time the identification of micro RNAs in the Epstein-Barr virus (EBV) genome. The findings could explain previously puzzling mechanisms for infection, latency, and tumorigenesis in EBV, according to the paper's authors.

Micro RNAs are about 22 nucleotides in length and arise from defined genes to produce transcripts that typically form imperfect hairpin structures, said James C. Carrington, director of the Center for Gene Research and Biotechnology at Oregon State University. They are precisely processed to yield a single micro RNA that targets in trans one or more genes for post-transcriptional negative regulation, said Carrington, who was not involved in the study.

In spite of having been intensively studied for years, five of the 80 genes in the genome of EBV—a DNA virus—have consistently been missed, said Thomas Tuschl, from the laboratory of RNA Molecular Biology at the Rockefeller Institute ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Cathy Holding

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours